If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-30x+29=0
a = 5; b = -30; c = +29;
Δ = b2-4ac
Δ = -302-4·5·29
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-8\sqrt{5}}{2*5}=\frac{30-8\sqrt{5}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+8\sqrt{5}}{2*5}=\frac{30+8\sqrt{5}}{10} $
| x+4=20 | | 6(8-2r)=-7r+23 | | 3(2x+4)=5x+9 | | -4x–8=16 | | 2(x+9)+7x=9x-18 | | 21-2(x-3)=5x-22 | | (2x-8)-(8x^2-6x+18)=(6x)-(64-6x+18) | | -18+3(2x+6)=5x+12 | | x+2.3=4.8 | | 3x+23+7x-13=180 | | x+½=4½ | | 3x-21+4x+24/24=0 | | N-5-3=-2n+1 | | 2p=7p-15 | | 8x–7=17 | | 6(x-20=54 | | 2(2x+5)+6=9x-10 | | 4v-10=5v-13 | | x-3=49-7/6x | | 3t=t+56 | | 5y+4=15+6y | | 24=7w-w | | −35=7t | | -2n+3n=5n-3n-5 | | 4y+3y=6y+18 | | -4x-17=60 | | 2-(x-5)+3=-10+3x+20 | | 4y-13=7+1/2 | | 2-(x-5)+3=-10+3x+20 | | 3y-7=5y+21 | | 4+16=2v | | 9x+45=15x |